

Водокольцевые вакуумные насосы SL Vacuum SKA SERIES

Инструкция по эксплуатации

ООО «Зенова»

Тел. +7 342 225 00 40

mail: client@zenova.ru

Редакция 10 от 9 августа 2022 г.

Содержание

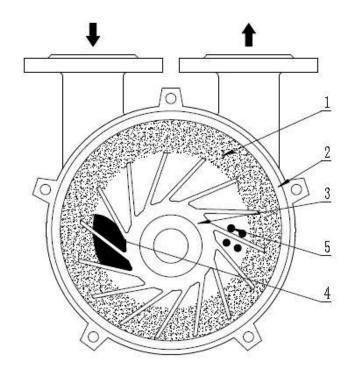
Общие сведения	3
Отличительные черты	3
Принцип работы	3
Минимальное остаточное давление	4
Требования к перекачиваемой и окружающей среде	5
Рабочая жидкость	5
Методы подачи рабочей жидкости	6
Проточный метод подачи рабочей жидкости	6
Сепаратор и частичная рециркуляция	6
Сепаратор	7
Подготовка к работе	7
Антикавитационный клапан	8
Меры предосторожности	10
Меры предосторожности	11
Внешний осмотр	
Смазка двигателя	11
Ремонт	11
Спецификация	12
Кривые производительности	13
Чертежи	15
SKA2	15
SKA5	16
Возможные неисправности и их решения	19

Общие сведения

Водокольцевые насосы серии SKA предназначены для перекачки неагрессивных газов и водяного пара. Они могут достигать остаточного давления до 33 мбар (97% вакуума, при температуре сервисной жидкости менее +4 °C). Если насос продолжительное время работает на поддержку давления менее 80 мбар, необходимо подключить защиту от кавитации для защиты насоса. Если в системе установлен воздушный эжектор, давление на входе может достигать 10 мбар. Воздушный эжектор может быть установлен непосредственно в насос. Максимальное давление на выходе насоса может достигать 2,6 бара (на выходе из насоса поступает водно-воздушная смесь)

Водокольцевые насосы находят широкое применение во многих отраслях, таких как нефтехимия, фармацевтика, пищевая и сахарная промышленность. Так как сжатие воздуха осуществляется без повышения температуры, не возникает непосредственной опасности при перекачке горючих и взрывоопасных газов. В результате, насосы данного типа используются повсеместно.

Отличительные черты


- Двигатель и насос установлены на одной оси. Такая конструкция позволяет сэкономить место и упрощает монтаж.
- Стандартно на насосе установлено механическое уплотнение, позволяющее не только исключить протечки, но и обеспечить легкий ремонт.
- Вибрация во время работы насоса минимальна, а уровень шума не превышает 62 дБА.
- Насос подходит для непрерывной эксплуатации.

Принцип работы

Насосы серии SKA работают на водокольцевом принципе. Импеллер (рабочее колесо) в таком насосе установлен эксцентрично внутри рабочей камеры — то есть ось его вращения не совпадает с центром камеры. После запуска насоса рабочая жидкость раскручивается импеллером и, под действием центробежной силы, формирует жидкостное кольцо вдоль стенок рабочей камеры. Лопасти импеллера частично погружаются в жидкость. Так как импеллер установлен эксцентрично, а толщина водяного кольца одинакова по всему периметру рабочей камеры, объем воздуха между отдельно взятой

парой лопастей импеллера и рабочей жидкостью меняется в течение каждого оборота. Когда этот объем увеличивается, через впускной клапан засасывается воздух. Когда — уменьшается, газ выталкивается через выпускной клапан.

На рисунке 1 изображена схема работы водокольцевого насоса (вид со стороны крышки насоса)

Рисунок 1:

- 1) кольцо рабочей жидкости;
- 2) стенка рабочей камеры;
- 3) рабочее колесо (импеллер);
- 4) вход воздуха;
- 5) выход воздуха.

Минимальное остаточное давление

Минимальное остаточное давление зависит от температуры и рабочей жидкости. Обратите внимание: в случае, если насос не имеет защиты от кавитации, входное

давление не должно опускаться ниже 80 мбар. Это связано с тем, что при температуре воды 15° С, температуре перекачиваемого газа 20° С и давлении менее 80 мбар в воде могут начать образовываться пузырьки насыщенного пара — будет развиваться кавитация. Схлопываясь, такие пузырьки будут формировать микрогидроудары и повреждать импеллер. Если температура вашей жидкости выше, или вы используете не воду, убедитесь, что давление насыщенного пара для вашей жидкости при данной температуре всегда ниже, чем минимальное остаточное давление в вашей системе.

Чем выше будет температура рабочей жидкости, тем хуже будет всасывающая способность насоса. Если длительное время использовать насос при давлении ниже допустимого, кавитация неизбежно разрушит насос.

Требования к перекачиваемой и окружающей среде

Перекачиваемый газ или газопаровая смесь не должны содержать твердых включений, за исключением небольшого количества взвешенных частиц.

Если перекачивается газ или пар с температурой выше 80°С, рекомендуется увеличить поступление свежей холодной рабочей жидкости, или использовать охладитель.

Температура окружающей среды – от 5 до 40°C.

Рабочая жидкость

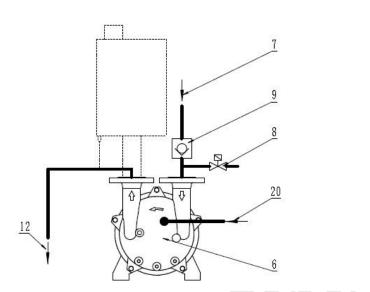
Во время работы водокольцевого насоса необходимо постоянно подавать рабочую жидкость в насос. Следите за чистотой рабочей жидкости:

- рабочая жидкость не должна содержать твердых включений;
- рабочая жидкость не должна содержать растворенных минералов, способных выпасть в осадок (в том числе окислы и соли железа и кальция);
 - рабочая жидкость не должна вступать в химическую реакцию с материалами насоса;
- рабочая жидкость должна быть однородна (запрещено использовать смеси, взвеси и эмульсии).

В спецификации указана необходимая подача рабочей жидкости при перекачивании сухих газов. Если в вашей линии не предусмотрен расходомер для жидкости, то поддерживайте давление жидкости на входе на уровне одного бара. После первичной заливки, насос может сам засасывать сервисную жидкость.

Рабочая жидкость будет расходоваться по мере перекачивания газа (на испарение и брызги). Значительная часть сервисной жидкости будет выплескиваться через выходной патрубок вместе с откачиваемым воздухом.

Вы можете использовать сепаратор на выходе для разделения перекачиваемого газа и рабочей жидкости. Некоторые сепараторы могут возвращать рабочую жидкость обратно в насос. В этом случае рабочая жидкость может использоваться повторно.


В качестве рабочей жидкости рекомендуется использовать водопроводную или хорошо отфильтрованную воду, с содержанием минералов (по сухому остатку) не более 1 грамма на литр.

Помните, что чрезмерная минерализация рабочей жидкости приводит к выпадению минералов в узких каналах рабочей камеры насоса. В результате насос выходит из строя, что влечет за собой снятие гарантии.

Методы подачи рабочей жидкости

Проточный метод:

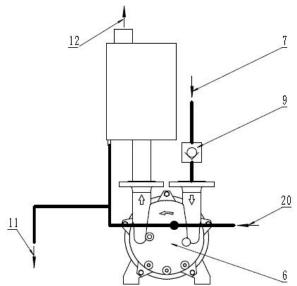


Рисунок 3: 6) корпус вакуумного насоса; 7) всасывающий патрубок; 8) электромагнитное реле; 9) обратный клапан; 10) сепаратор; 11) перепускной клапан; 12) выходной патрубок; 20) подача рабочей жидкости.

Проточный метод подачи рабочей жидкости

Данный вид подключения применяется для обеспечения минимального остаточного давления на входе. Для этого в насос подается достаточное количество рабочей жидкости, которая затем выбрасывается вместе с откачанным воздухом через выход. По мере того, как рабочая жидкость покидает насос, в него добавляется свежая жидкость.

После предварительного заполнения насосы могут работать и автоматически осуществлять подсос рабочей жидкости. Это требует достаточного количества рабочей жидкости на момент старта насоса.

Сепаратор и частичная рециркуляция

Этот метод подачи поможет сохранить часть воды. Часть рабочей жидкости осаждается в сепараторе и напрямую стекает в насос, без какого-либо охлаждения. Часть жидкости в этом случае теряется на испарение, и замещается свежей. Все наборы соединений поставляются вместе с сепараторами.

Сепаратор

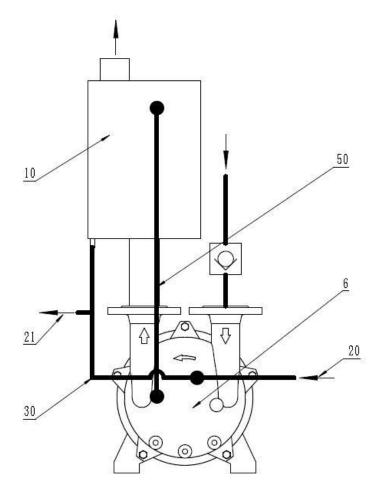


Рисунок 4:

- 6) вакуумный насос;
- 10) сепаратор;
- 20) подача рабочей жидкости;
- 21) слив рабочей жидкости;
- 30) линия циркуляции рабочей жидкости;
- 50) линия защиты от кавитации.

Сепаратор предназначен для разделения жидкости и перекачиваемого газа. Он позволяет повторно использовать рабочую жидкость, что существенно сокращает ее расход (см. рисунок 4). Сепаратор поставляется в качестве аксессуара со всеми необходимыми патрубками.

Если необходима защита от кавитации, защитный клапан подключается между сепаратором и корпусом насоса.

Подготовка к работе

Насосы серии SKA достаточно поместить на горизонтальную поверхность и зафиксировать при помощи болтов. Нет необходимости в сооружении специальной рамы.

Для того, чтобы мелкие частицы из окружающего воздуха не проникали внутрь насоса, все соединительные разъемы закрыты заглушками. Не удаляйте заглушки до того, как будете готовы подключить насос к системе.

Для того, чтобы предотвратить обратный ток и попадание жидкости в вакуумируемую сеть, рекомендуется установить обратный клапан со стороны всоса.

Подключаемая к насосу система должна соответствовать следующим требованиям:

- Давление со стороны выходного фланца не должно превышать максимально допустимое (2,6 Бар).
- Если система собрана недавно, со стороны всасывающего фланца на первые 100 рабочих часов рекомендуется установить фильтр, дабы предотвратить попадание в насос сварочного шлака, который мог остаться после сборки системы.

Если обратный клапан установлен, убедитесь, что он открылся при старте, в ином случае — отключите насос.

Обратите внимание: насос нельзя эксплуатировать без рабочей жидкости. Перед началом работы заполните насос жидкостью через воздушный вход или воздушный выход.

Проверьте выходную линию и линию подачи воды, убедитесь, что они подключены корректно.

Проверьте направление вращения двигателя и рабочего колеса.

Вход и выход газа, а также направление вращения двигателя отмечены стрелками на корпусе.

Включите насос и проверьте подачу рабочей жидкости. Если необходимо, вы можете воспользоваться регулировочным краном для настройки потока жидкости (кран не является частью насоса и может быть приобретен отдельно). Воспользуйтесь расходомером для точной настройки.

Важно: насос тестируется на производстве для контроля качества. В процессе хранения насоса остатки сервисной жидкости могут окислять рабочие элементы насоса, что не сказывается на его рабочих характеристиках, но может затруднять первый старт после длительного хранения.

Перед основным запуском насоса, заполните его водой и промойте, включив на короткое время и затем слив воду.

Антикавитационный клапан

Антикавитационный клапан расположен на передней части, со стороны выходного патрубка. Клапан может быть закрыт заглушкой, краном или быть открытым. В случае если

насос не создает достаточно глубокий вакуум, или если при работе насоса появляется кавитация, значит нужно настроить клапан антикавитационной защиты.

Как настроить клапан

Если у вас уже установлен кран на антикавитационном патрубке:

- 1. Установите насос в нужное место.
- 2. Подключите насос к вакууммируемой линии.
- 3. Подключите вакуумметр к вакууммируемой линии.
- 4. Подключите насос к источнику воды (или другой сервисной жидкости).
- 5. Включите насос.
- 6. Плавно прикрывайте кран антикавитационной защиты до тех пор, пока не услышите нарастающий резкий звук (похожий на закипающий чайник или работу болгарки при резке металла). Это и есть звук кавитации.
- 7. Плавно приоткрывайте кран антикавитационной защиты до тех пор, пока звук кавитации не пропадет.
- 8. При каждом запуске насоса проверяйте положение крана антикавитационной защиты. **Если у вас антикавитационный клапан с головкой под ключ:**
- 1. Установите насос в нужное место.
- 2. Подключите насос к вакууммируемой линии.
- 3. Подключите вакуумметр к вакууммируемой линии.
- 4. Подключите насос к источнику воды (или другой сервисной жидкости).
- 5. Включите насос.
- 6. Плавно закрутите клапан антикавитационной защиты до тех пор, пока не услышите нарастающий резкий звук (похожий на закипающий чайник или работу болгарки при резке металла). Это и есть звук кавитации.
- 7. Плавно откручивайте клапан антикавитационной защиты до тех пор, пока звук кавитации не пропадет.
- 8. При каждом запуске насоса проверяйте положение клапана антикавитационной защиты.

Если у вас простое отверстие на месте клапана антикавитационной защиты:

1. **Купите подходящий кран.** Можно купить обычный шаровый кран в ближайшем сантехническом магазине или приобрести специальный конусный (пробковый) кран для более плавной регулировки.

- 2. Установите купленный кран в отверстие клапана антикавитационной защиты.
- 3. Установите насос в нужное место.
- 4. Подключите насос к вакууммируемой линии.
- 5. Подключите вакуумметр к вакууммируемой линии.
- 6. Подключите насос к источнику воды (или другой сервисной жидкости).
- 7. Включите насос.
- 8. Плавно прикрывайте кран антикавитационной защиты до тех пор, пока не услышите нарастающий резкий звук (похожий на закипающий чайник или работу болгарки при резке металла). Это и есть звук кавитации.
- 9. Плавно приоткрывайте кран антикавитационной защиты до тех пор, пока звук кавитации не пропадет.
- 10. При каждом запуске насоса проверяйте положение крана антикавитационной защиты.

Меры предосторожности

Если необходимо контролировать насос автоматически, то подача рабочей жидкости должна контролироваться электромагнитным клапаном, который, в свою очередь, открывается и закрывается синхронно с включением и выключением двигателя:

- Когда насос работает клапан открыт.
- Когда насос выключен клапан закрыт.

Если насос не имеет автоматического контроля клапанов, откройте вентиль сразу после старта насоса и закройте его немедленно после выключения.

После выключения насоса управляющий клапан закрывается.

Осторожно! Если рабочая жидкость опасна для человека или оборудования, из соображений безопасности, перед открытием насоса промойте его. Для этого, прокачайте через насос достаточное количество чистой воды.

Открутите винт под крышкой насоса и дайте стечь рабочей жидкости. Вручную прокрутите рабочее колесо до тех пор, пока не стечет вся жидкость. Колесо можно прокрутить, вращая вентилятор двигателя, расположенный сзади насоса за защитной решеткой.

Обычно, достаточно прокрутить рабочее колесо на 45°, и вся жидкость стечет. Без жидкости насос может храниться длительное время, в том числе при отрицательных температурах.

Если насос останавливается на срок более 4-х недель, из него следует слить жидкость. После этого можно приступать к консервации. Если насос остановлен из-за накипи, в него стоит на 30 минут залить 10% раствор щавелевой кислоты.

Обслуживание

Внешний осмотр

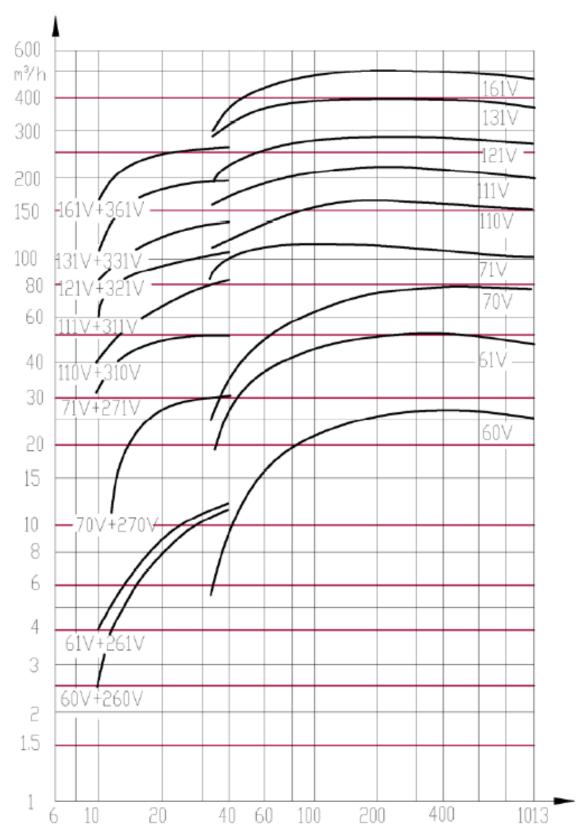
Для того, чтобы предохранить насос и рабочее колесо от разрушения абразивными частицами и заклинивания, пыль, попадающая в насос вместе с перекачиваемым воздухом необходимо вымывать из рабочей камеры через отверстие под крышкой.

Если в качестве рабочей жидкости выступает жесткая вода, ее необходимо смягчать, либо периодически промывать насос раствором слабой кислоты (10% раствор щавелевой кислоты).

Смазка двигателя

В нормальных условиях, когда рабочая частота двигателя составляет 50 Гц, необходимо проверять вал и подшипники двигателя (люфт, ход, смазка) каждый 20 тысяч рабочих часов или раз в три года. Если насос работает в более тяжелых условиях, проверку и, при необходимости, замену нужно проводить чаще.

Ремонт


Внимание, не проводите ремонт насоса самостоятельно, обратитесь в сервисный центр или к поставщику. Если насос разбирался в случаях, неописанных в инструкции, гарантия автоматически снимается.

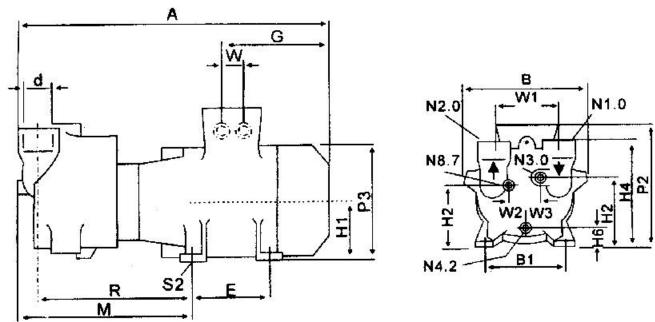
Спецификация

Кривая производительности	Тип	Мощность (кВт)	Расход воздуха (м³/ч)	Подача воды (м³/ч)	Вес (кг)	Шум (дБА)
60V	SKA2061-	0.81	27	0.12	20	62
	0NC06-1p					
61V	SKA2061-	1.45	52	0.12	22	65
	0NC02-1p					
70V	SKA2070- 0NC06-1p	2.35	80	0.15	31	66
71V	SKA2071- 0NC06-1p	3.85	110	0.25	42	72
101V	SKA5110- 0KC00-7p	4	165	0.4	78	63
111V	SKA5111- 0KC00-7p	5.5	230	0.5	100	68
121V	SKA5121- 0KC00-7p	7.5	280	0.6	145	69
131V	SKA5131- 0KC00-7p		400	0.9	165	73
161V	SKA5161- 0KC02-7p	15	500	1.2	252	74

Внимание! В спецификации к насосам указано номинальное потребление тока. В реальности оно может отличаться и превышать номинальное в 1,5 раза. Это нужно учитывать при подборе автомата защиты.

Кривые производительности

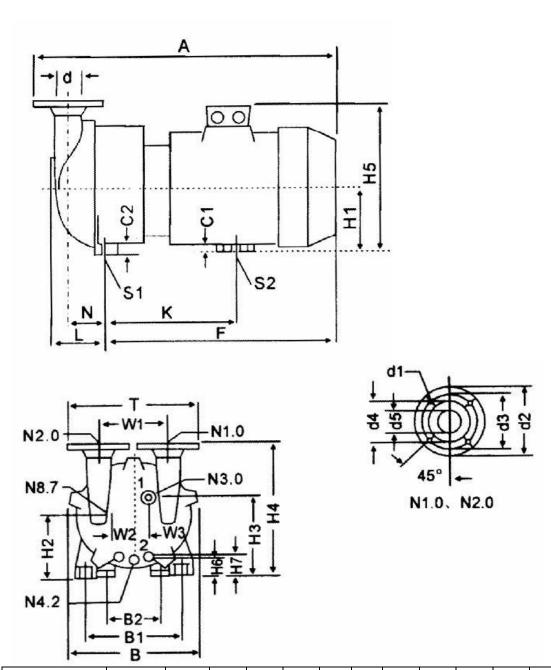
Пример подбора насоса:


- 1. Предположим, что необходимые параметры системы:
 - а. Производительность по воздуха (V) = 100 м³/ч.
 - b. Предельное остаточное давление (P1) = 40 мбар.
- 2. Все остальные параметры стандартны. Выбираем кривую производительности, наиболее близкую к 1. Для этого проведем две линии, параллельные осям координат через точки 100 м³/ч и 40 мбар. Найдем место их пересечения и выберем ближайшую кривую.
- 3. В данном примере это 71V. Находим модель насоса, соответствующую данной кривой производительности. В данном случае это SKA2071-0NC06-1p.

ОБРАТИТЕ ВНИМАНИЕ: данные кривые производительности основаны на предположении, что температура перекачиваемого газа 20° С, воздух не является сухим, температура жидкости 15° С. Выходное давление 1013 мбар. Погрешность кривой производительности ±10 %. Кривая производительности слева отражает систему с атмосферным эжектором.

zenova.ru

Чертежи


SKA2

- 37													
модель	Кривая	Α	В	B1	Е	H1	H2	Н3	H4	H6	М	P2	P3
SKA2-	60)/	155	106	140	100	5	110	106	10E	27.5	244	250	100
060	60V	455	186	140	100	90	118	126	195	37.5	244	250	180
SKA2-	C4)/	470	400	440	100	00	440	400	405	27.5	202	250	400
061	61V	476	186	140	100	90	118	126	195	37.5	263	250	180
SKA2-	70)/	EAE	222	160	140	100	100	116	222	22	200	270	202
070	70V	545	223	160	140	100	128	146	222	33	280	270	203
SKA2-	74\/	EGG	222	100	110	110	140	450	224	45	200	200	225
071	71V	566	223	190	140	112	140	158	234	45	309	300	225

модель	Кривая	R	S2	W1	W2	W3	D	N3.0	N4.2	N8.7
SKA2-060	60V	217	ø10	110	25.5	21	G1	G3/8	G1/4	G3/8
SKA2-061	61V	236	ø10	110	25.5	21	G1	G3/8	G1/4	G3/8
SKA2-070	70V	252	ø12	110	33	27	G1½	G3/8	G1/4	G3/8
SKA2-071	71V	278	ø12	110	33	27	G1½	G3/8	G1/4	G3/8

SKA5

Модель	Кривая	Α	В	B1	B2	C1	C2	H1	H2	Н3	H4	H5	Н6	H7	K	L
SKA5 110-0KC	101V	637	325	255	190	41	26	140	156	202	361	328	38	57	342	130
SKA5 111-0KC	111V	672	325	265	216	38	26	150	166	212	371	363	48	68	348	130
SKA5 121-0KC	121V	771	347	265	216	36	26	150	167	217	385	363	39	60	430	147
SKA5 131-0KC	131V	852	377	300	254	35	30	175	194	249	427	435	53	76	477.5	147
SKA5 161-0KC	161V	1044	479	370	389	52	30	210	225	303	521	485	51	80	570	201

Модель	Кривая	F	N	S1	S2	Т	d1	d2	d3	d4	d5
SKA5 110-0KC	101V	464	92	ø12×23	ø12	340	19	160	123	97	52
SKA5 111-0KC	111V	500	92	ø12×23	ø12	340	19	160	123	97	52
SKA5 121-0KC	121V	584	97	ø12×23	ø12	382	19	182	142	113	66.5
SKA5 131-0KC	131V	658.5	103	ø12×23	ø14	382	19	182	142	113	66.5
SKA5 161-0KC	161V	808	138	ø15×27	ø14	450	22	200	156	130	80

Модель	Кривая	W1	W2	W3	«d(N1.0,N2.0»	N3.0	N4.2	N8.7
SKA5 110-0KC	101V	180	52	27	«DN50/2»	G3/4	G3/8	G3/8
SKA5 111-0KC	111V	180	52	27	«DN50/2»	G3/4	G3/8	G3/8
SKA5 121-0KC	121V	200	57	29	«DN65/21/2»	G3/4	G3/8	G3/8
SKA5 131-0KC	131V	200	62.5	32	«DN65/24/2»	G3/4	G3/8	G3/8
SKA5 161-0KC	161V	250	81	41	«DN80/3»	G3/4	G3/8	G3/8

zenova.ru

Возможные неисправности и их решения

Описание неисправности	Вероятная причина	Способы устранения
Мотор не стартует, насос не	Повреждение на линии питания	Проверьте подключение
издает никаких звуков		проводов и напряжение в сети
Мотор не крутится, но гудит	- поврежден или отключен один из электрических проводов; - значительное отклонение напряжения питания от номинала; - заклинивание ротора мотора; - рабочее колесо заклинило накипью или ржавчиной: -повреждение вала.	Проверьте напряжение питающей сети. Опорожните и промойте насос. При необходимости, восстановите зазор между рабочим колесом и стенками рабочей камеры. Проверьте целостность вала. При необходимости — замените.
При старте двигателя	- короткое замыкание в	Проверьте обмотку двигателя.
срабатывает автоматическая	обмотке;	Уменьшите подачу рабочей
токовая защита	- перегрузка двигателя;	жидкости. Снизьте давление на
	- превышено выходное	выходе из насоса. Слейте
	давление;	излишки рабочей жидкости.
	- слишком много рабочей жидкости;	
Перегрузка двигателя	Засор	Промойте насос и удалите
Troporpyona gornaross		засор
Насос не всасывает воздух	- нет рабочей жидкости;	Проверьте уровень рабочей
	- негерметичные соединения;	жидкости. Повысьте
	- неверное направление	герметичность соединений.
	вращения двигателя.	Поменяйте местами два
		пводокольцевых насоситающих
		провода и измените
		направление вращения
Слишком высокое остаточное	- приобретена неверная модель	двигателя. Приобретите более
давление.	насоса;	производительную модель.
давление.	- недостаточная подача	Увеличьте подачу рабочей
	рабочей жидкости;	жидкости. Охладите рабочую
	- слишком высокая температура	жидкость. Обеспечьте
	рабочей жидкости;	герметичность системы,
	- коррозия проточной части	замените уплотнения.
	насоса;	
	- система недостаточно	
	герметична;	
	- уплотнения недостаточно герметичны.	
Резкий звук при работе	- кавитация;	Подключите защиту от
- commonly in property	- излишняя подача рабочей	кавитации. Ограничьте подачу
	жидкости.	рабочей жидкости.
Насос протекает	Повреждение уплотнений	Проверьте целостность
		уплотнений

Обратите внимание: данная инструкция может быть изменена производителем без предварительного уведомления