К списку статей

Давление насосов

05.04.2013

Статья отредактирована и дополнена в мае 2019 года.

Наряду с производительностью давление насоса является его важнейшей характеристикой. Разбираемся что она означает. Заодно ответим на такие вопросы:
- Чем давление насоса отличается от напора?
- В чем измеряют давление? Как соотносятся бары, атмосферы и метры водяного столба?
- Как давление зависит от плотности жидкости?
- Почему давление в напорной линии не всегда равно полезному давлению насоса?
- Почему насос не всегда работает на своем максимальном давлении?
- Какое максимальное давление бывает у разных типов насосов?
- Как отрегулировать давление насоса?
- Где подобрать насос с нужным давлением онлайн? Забегая вперед, сразу скажем - у нас на сайте, никуда ходить не нужно!)))

Давление насоса (напор) - наряду с производительностью (подачей, расходом) вторая ключевая характеристика насоса. Показывает способность насоса преодолеть сопротивление трубной системы и переместить жидкость из всасывающей линии в напорную. 

Если производительность насоса отвечает на вопрос какой объем жидкости насос может переместить за единицу времени, то давление отвечает на вопрос какое именно сопротивление трубной системы (в барах) может преодолеть насос. 

Небольшие центробежные насосы (например, аквариумные) способны развивать максимальное давление 0,05 бар (то есть создавать напор воды до 0,5 метра). Некоторые промышленные насосы объемного типа (например, плунжерные) способны развивать давление до 200 бар и даже больше.


В чем измеряют давление насосов? Какие бывают единицы измерения? 

Основная единица измерения давления для насосов - техническая атмосфера (кгс/см2). Она равна 10 метрам водяного столба (обозначается сокращенно как м.в.ст.). 10 м.в.ст. = 1 кгс/см2. 

Другая популярная единица измерения давления – бар (1 бар = 100 000 Паскаль = 0,1 МПа).

Как соотносятся между собой бары/паскали с одной стороны и метры водяного столба/тех. атмосферы с другой?
0,1 МПа = 1 бар = 1,0197 кгс/см2 = 10,197 м.в.ст.

То есть выходит, что один бар чуть больше, чем одна техническая атмосфера (кгс/см2). А 10 метров водяного столба чуть меньше, чем 1 бар. Разница составляет менее 2%. Так вот на практике этой разницей пренебрегают и приравнивают бар с технической атмосферой. Говорят, столб чистой воды высотой 10 метров давит с такой же силой, что и 1 бар или 1 атмосфера. И большой ошибки в этом не будет, кроме тех ситуаций, где нужна высокая точность расчетов.


Иногда давление называют напором. Нет ли здесь ошибки?

На самом деле ошибки нет. Давление и напор насосов можно считать синонимами. «Давление» – более корректный технический термин, но наряду с ним часто используют и термин «напор», обычно для центробежных насосов.

Когда говорят про напор, то имеют в виду на какую высоту способен поднять жидкость насос в открытой системе. В открытой системе поток жидкости не изолирован от атмосферы. В такой системе насосу приходится преодолевать не столько сопротивление трубной системы, сколько «бороться» с тяжестью водяного столба в напорной линии.

Типичный пример подбора насоса с нужным напором – это подбор многоступенчатого центробежного насоса. Если нужно поднять воду на высоту 20 этажей (при высоте этажа 3 метра), то говорят, что насос должен развить напор не менее 60 метров (водяного столба). На самом деле напор насоса должен быть еще немного выше, ведь он должен еще преодолеть потери на трение в трубопроводе. В любом случае давление в напорном трубопроводе при работе насоса составит не менее 6 атмосфер.


Ловушки при определении давления (напора) насоса

  •  Ловушка №1. Не забывайте про плотность жидкости.
    На практике обычно говорят, что напор в 50 метров равен 5 барам (атмосферам) и иногда забывают, что речь не об абстрактных 50 метрах, а 50 метрах ВОДЯНОГО СТОЛБА. Да, если насос перекачивает воду, то все верно. Но если насос будет перекачивать насыщенный раствор сахара с плотностью в 1,3 раза больше, чем у воды, то при напоре в 50 метров такой плотной жидкости, давление составит уже не 5, а 6,5 кгс/см2, то есть в 1,3 раза больше (пропорционально увеличению плотности). Соответственно для перекачивания жидкостей с повышенной плотностью специально подбирают насосы с усиленным корпусом и увеличенной мощностью двигателя.  

Зависимость давления в напорной линии от плотности жидкостиИзображение 1. Зависимость давления в напорной линии от плотности жидкости. 

На изображении 1 показана зависимость давления в напорной линии от плотности жидкости. На левом рисунке насос перекачивает чистую воду с плотностью 1 кг/дм3. Перепад высоты между манометром и точкой подъема жидкости насосом составляет 50 метров. При этом манометр показывает давление 5 кгс/см2.

На среднем рисунке насос перекачивает растворитель с плотностью 0,7 кг/дм3 (ниже плотности воды). При том же самом перепаде высоты 50 метров манометр будет показывать лишь 3,5 кгс/см2.

Наконец, на правом рисунке насос перекачивает насыщенный раствор сахара с плотностью 1,3 кг/дм3 (выше плотности воды). При перепаде высоты 50 метров манометр покажет давление 6,5 кгс/см2.


 Ловушка №2. Давление, создаваемое насосом, не всегда равно давлению в напорной линии и не всегда связано с высотой подъема жидкости насосом. Дело в том, что жидкость может попадать в насос уже с некоторым давлением (положительным или отрицательным). 

Изображение 2. При работе в замкнутом контуре полезный напор насоса равен 0.

На изображении 2 показана схема, при которой насос перекачивает воду в замкнутом (но не изолированном от атмосферы) контуре. Высота подъема жидкости после насоса равна 4 метра, но и на вход в насос вода попадает с тем же самым подпором 4 метра. Поскольку статическое давление на входе и выходе из насоса равны, то полезный напор, создаваемый насосом, будет равен 0 (или чуть больше 0 с учетом потерь на сопротивление). Иначе говоря, насос будет работать при нулевом перепаде давлений. Все, что требуется насосу в этой ситуации – это преодолеть сопротивление трубопровода. При этом давление в корпусе насоса будет равно 0,4 кгс/см2 (то есть будет равно статическому давлению столба воды высотой 4 метра). 

Изображение 3. Полезный напор насоса на этом рисунке составляет 20 метров в.ст. (30 на выходе минус 10 на входе).

На изображении 3 вода поступает в насос с положительным подпором в 10 м.в.ст (манометр на входе в насос показывает 1 кгс/см2). Насос же поднимает водяной столб на высоту 30 м.в.ст. (манометр на выходе из насоса показывает 3 кгс/см2). Полезный напор насоса составляет 20 м.в.ст. (30 на выходе – 10 на входе). Иными словами перепад давлений в насосе составит 2 кгс/см2.

С точки зрения самого насоса ситуация с 10 метрами подпора на входе и 30 метрами напора на выходе идентична той, когда, например, на входе нулевое давление, а напор на выходе равен 20 метрам. То есть 30 – 10 = 20 – 0.

Только следует помнить, что корпус насоса должен быть рассчитан именно на давление в напорной линии, а не на размер перепада между входом и выходом. В нашем примере насос создает перепад давлений 2 кгс/см2, однако давление в корпусе насоса при этом составит 3 кгс/см2. Именно на 3 кгс/см2 он и должен быть рассчитан (и желательно с запасом). 

Полезный напор при работе насоса в режиме самовсоса увеличивается на высоту самовсосаИзображение 4. Полезный напор насоса на этом рисунке составляет 34 метра в.ст. (30 на выходе + 4 высота самовсоса). 

На изображении 4 насос работает в режиме самовсоса, иначе говоря - с отрицательным подпором на всасывании. Высота самовсоса составляет 4 метра, а это значит, что в напорной линии давление будет ниже атмосферного на 0,4 кгс/см2. Манометр на входе в насос будет бесполезен, потому что он показывает давление выше только выше атмосферного. Чтобы увидеть отрицательное давление на входе в насос нужно поставить вакууметр. В данном случае он покажет давление на 0,4 кгс/см2 ниже атмосферного (вакууметр будет показывать значение 0,6 кгс/см2 (то есть на 0,6 кг/см2 выше абсолютного вакуума, но на 0,4 кг/см2 ниже атмосферного давления).

Подъем воды насосом составляет 30 м.в.ст. Высота самовсоса - 4 метра. Полезный напор, создаваемый насосом, будет равен 30 + 4 = 34 м.в.ст. или 3,4 кгс/см2.


  • Ловушка №3. Часто считают, что если максимальное давление насоса составляет 10 бар, то и давление в напорной линии непременно будет 10 бар. На самом деле нет. 

Реальное давление в линии будет определяться сопротивлением трубной системы, которое она сможет создать насосу. Если система закрытая (жидкость циркулирует по замкнутому контуру без сообщения с атмосферой), то давление в контуре будет равно сопротивлению в системах труб и никак не будет связано с перепадом высоты циркуляции жидкости.

Если система открытая (сообщается с атмосферой), то на первый план выходит высота перепада жидкости, которую нужно преодолеть насосу.

Трубная система может включать элемент, который создает дополнительно повышает давление в линии. Это может быть клапан повышения давления, или, например, фильтр-пресс, сопротивление которого насос должен преодолеть.

Если сопротивление в линии ниже, чем максимальное давление насоса, реальное давление в линии окажется равно этому сопротивлению (а не максимальному давлению насоса).

Если сопротивление в линии выше, чем то, что может преодолеть насос, для насоса это будет равносильно работе на закрытую задвижку. При этом динамические насосы будут работать «вхолостую» и с ними может ничего не произойти, кроме риска перегрева (ведь они перестанут охлаждаться потоком жидкости). Мембранные пневматические насосы в этой ситуации остановятся и с ними не будет ничего плохого. Большинству же объемных насосов работа на закрытую задвижку строго противопоказана. Ведь они не ограничены верхним пределом создаваемого давления и будут пытаться повысить его, пока их двигатель не перегреется или корпус насоса не повредится от избыточного давления.


Давление различных видов насосов

Давление зависит от вида насоса. Насосы бывают динамические (центробежные, вихревые) или объемные, (шестеренные, винтовые, плунжерные, перистальтические, мембранные).  

Центробежные одноступенчатые насосы не способны обеспечивать давление более 10-11 кгс/см2 (то есть не могут развить напор воды более 100-110 метров) даже при очень большой мощности электродвигателя. 

Вихревые насосы обеспечивают давление до 16 кгс/см2 (напор воды 160 метров) даже при небольшой мощности благодаря особой форме рабочего колеса. Каждая частичка воды соприкасается с таким колесом несколько раз и приобретает большую энергию. Обратная сторона такой «выгоды» - значительное ухудшение такой характеристики вихревого насоса, как его подача. 

Другим возможным решением улучшить напор насоса - применение нескольких последовательных колес в корпусе одного насоса. Такие агрегаты называют многоступенчатыми насосами. Их КПД по сравнению с вихревыми достаточно высок. Максимальное давление этих насосов достигает 30 кгс/см2 (300 метров водяного столба). 

Высокое давление могут обеспечить объемные насосы различных типов. К ним относятся шестеренные, винтовые, плунжерные, перистальтические, мембранные). 

Шестеренные насосы в нашем каталоге обеспечивают давление до 14,5 кгс/см2. 

Большинство мембранных пневматических насосов обеспечивают максимальное давление до 7-8 кгс/см2. 

Плунжерные дозировочные насосы из нашего каталога развивают давление до 20-25 бар. 


Как между собой связаны давление, производительность и потребляемая мощность насоса?

У центробежных насосов зависимость между производительностью и давлением выражена кривой производительности. Чем больше больше, тем меньше производительность. При этом потребление энергии насоса растет по мере увеличения производительности.

Зависимость производительности центробежного насоса от давленияИзображение 5. Зависимость производительности, давления, потребляемой мощности и КПД центробежного насоса.

На изображении 5 показана кривая характеристик одного центробежного насоса. Синяя кривая показывает зависимость производительности от давления. Черная линия показывает мощность на валу насоса по мере роста производительности. И, наконец, кривая зеленого цвета показывает изменение КПД по мере изменения давления.

Если сопротивление трубной системы будет равно 0, то есть насос будет выливать воду из напорного патрубка без подключения к линии, то его производительность будет максимальной, а создаваемый напор будет нулевым. Работа в таком режиме для центробежного насоса не очень полезна, поскольку потребляемая мощность будет максимальной и двигатель насоса может сгореть.

Если сопротивление системы будет составлять 32 метра водяного столба, то насос будет работать в точке, показанной красным цветом. При этом его производительность будет составлять 54 м3/час, давление 32 м.ст. ст. (3,2 кгс/см2), потребляемая мощность (на валу) 6,6 кВт, а КПД будет равен 71,3%.


У объемных насосов давление и производительность тоже имеют корреляцию, но обычно более слабую, чем у центробежных насосов. Исключение – мембранные пневматические насосы, которые имеют кривые характеристик, похожие на центробежные насосы. Обычно объемный насос имеет производительность, определяемую объемом перемещения жидкости за один рабочий такт и скоростью совершения этих тактов. Рабочее же давление объемного насоса определяется сопротивлением системы. При максимальном рабочем давлении производительность объемного насоса обычно немногим меньше, чем при нулевом давлении.


Способы регулировать давление насосов

  • Давление насоса можно регулировать с помощью изменения скорости вращения вала насоса. 

Для центробежного насоса снижение частоты вращения вала приводит к пропорциональному уменьшению максимальной производительности и уменьшению максимального давления во второй степени. Например, уменьшение частоты вращения в 1,5 раза приводит к уменьшению производительности в 1,5 раза и уменьшению давления в 2,25 раза (1,5²).  

Для объемных насосов уменьшение частоты вращения вала насоса приводит к пропорциональному снижению производительности. А вот на способность развивать давление снижение частоты вала объемного насоса никак не влияет. Напротив, запас мощности двигателя вырастает и насос сможет обеспечить еще более высокое давление, чем при номинальной скорости вращения.

Менять скорость вращения вала насоса, например, можно при помощи понижающей/повышающей редукторной (или ременной) передачи между двигателем и насосом.

Частоту вращения вала двигателя (и соответственно насоса) также можно регулировать при помощи частотного преобразователя. Этот способ регулирования давления является наиболее гибким и экономичным. Он позволяет насосу подстраиваться под изменение параметров системы и работать без существенного понижения КПД, несмотря на уменьшение производительности. Как правило, сильное падение КПД происходит лишь при очень резком (менее 30% от номинала) уменьшении частоты вращения.

  • Дросселирование -  метод изменения параметров насоса путем уменьшения сечения напорной или всасывающей линии с помощью задвижки, затвора или крана. 

Уменьшение сечения напорной линии уменьшает ее пропускную способность (а с ней и производительность), зато позволяет повысить давление на участке между насосом и задвижкой. Такой способ регулирования параметров насосов является довольно «варварским», поскольку уменьшает КПД насоса из-за дополнительного сопротивления в системе, которое насос пытается преодолеть.

Уменьшение сечения всасывающей линии так же уменьшает производительность насоса, с одновременным понижением давления (давление на выходе из насоса понижается за счет создания дополнительного разрежения во всасывающей линии между задвижкой и насосом). КПД насоса так же снижается, но несколько меньше, чем при дросселировании напорной линии.

  • Байпасирование - (by pass - в обход) - метод регулирования подачи и давления  насоса. 

Заключается в установке регулируемого или нерегулируемого перепуска (байпаса) с напорной линии на всасывание. По отношению к насосу - это аналогично снижению сопротивления, т.е. происходит снижение напора. По отношению к потребительской сети - это аналогично снижению подачи. В результате рабочая точка (Q-H) сместится круто вниз, т.е. можно в потребительской сети получить одновременно меньший напор и меньшую подачу (энергия жидкости идет на сброс). Байпасирование уменьшает КПД насосного агрегата, поэтому этот метод обычно используют для защиты насосов/линии от избыточного давления, но не для работы насоса в обычном режиме.


Как подобрать насос с нужным давлением?

Мы подготовили небольшую статью, в которой описали как подобрать необходимый насос по давлению (напору) и расходу (производительности). Перейдите сюда для подбора насоса онлайн

Вас также может заинтересовать

26.04.2019

Подбор насоса по напору и расходу онлайн

Подробнее
17.04.2019

Насос: динамический или объемный. Разбираемся в действующих силах

Подробнее
25.06.2013

Три фиктивные и одна реальная сила

Подробнее
27.05.2013

Принцип Бернулли. Практическое значение.

Подробнее
30.04.2013

Точка наибольшей эффективности vs оптимальная рабочая точка насоса

Подробнее